Accuracy First: Selecting a Differential Privacy Level for Accuracy Constrained ERM
نویسندگان
چکیده
Traditional approaches to differential privacy assume a fixed privacy requirement ε for a computation, and attempt to maximize the accuracy of the computation subject to the privacy constraint. As differential privacy is increasingly deployed in practical settings, it may often be that there is instead a fixed accuracy requirement for a given computation and the data analyst would like to maximize the privacy of the computation subject to the accuracy constraint. This raises the question of how to find and run a maximally private empirical risk minimizer subject to a given accuracy requirement. We propose a general “noise reduction” framework that can apply to a variety of private empirical risk minimization (ERM) algorithms, using them to “search” the space of privacy levels to find the empirically strongest one that meets the accuracy constraint, incurring only logarithmic overhead in the number of privacy levels searched. The privacy analysis of our algorithm leads naturally to a version of differential privacy where the privacy parameters are dependent on the data, which we term ex-post privacy, and which is related to the recently introduced notion of privacy odometers. We also give an ex-post privacy analysis of the classical AboveThreshold privacy tool, modifying it to allow for queries chosen depending on the database. Finally, we apply our approach to two common objectives, regularized linear and logistic regression, and empirically compare our noise reduction methods to (i) inverting the theoretical utility guarantees of standard private ERM algorithms and (ii) a stronger, empirical baseline based on binary search.
منابع مشابه
Dynamic Privacy For Distributed Machine Learning Over Network
Privacy-preserving distributed machine learning becomes increasingly important due to the recent rapid growth of data. This paper focuses on a class of regularized empirical risk minimization (ERM) machine learning problems, and develops two methods to provide differential privacy to distributed learning algorithms over a network. We first decentralize the learning algorithm using the alternati...
متن کاملStock Portfolio-Optimization Model by Mean-Semi-Variance Approach Using of Firefly Algorithm and Imperialist Competitive Algorithm
Selecting approaches with appropriate accuracy and suitable speed for the purpose of making decision is one of the managers’ challenges. Also investing decision is one of the main decisions of managers and it can be referred to securities transaction in financial markets which is one of the investments approaches. When some assets and barriers of real world have been considered, optimization of...
متن کاملMinimax Filter: Learning to Preserve Privacy from Inference Attacks
Preserving privacy of continuous and/or high-dimensional data such as images, videos and audios, can be challenging with syntactic anonymization methods which are designed for discrete attributes. Differential privacy, which provides a more formal definition of privacy, has shown more success in sanitizing continuous data. However, both syntactic and differential privacy are susceptible to infe...
متن کاملStress Analysis of Two-directional FGM Moderately Thick Constrained Circular Plates with Non-uniform Load and Substrate Stiffness Distributions
In the present paper, bending and stress analyses of two-directional functionally graded (FG) circular plates resting on non-uniform two-parameter foundations (Winkler-Pasternak foundations) are investigated using a first-order shear-deformation theory. To enhance the accuracy of the results, the transverse stress components are derived based on the three dimensional theory of elasticity. The s...
متن کاملAccuracy-Privacy Tradeoffs for Two-Party Differentially Private Protocols
Differential privacy (DP) is a well-studied notion of privacy that is generally achieved by randomizing outputs to preserve the privacy of the input records. A central problem in differential privacy is how much accuracy must be lost in order to preserve input privacy? Our work obtains general upper bounds on accuracy for differentially private two-party protocols computing any Boolean function...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017